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Abstract

This paper estimates the cost of effluent discharge regulations for firms 

located in the lower Kelani River catchment in Sri Lanka. The river provides 

water for many economic purposes including drinking water and avariety of 

ecosystem services. Employing multi-input and multi-output translog production 

technology, we estimate shadow prices of effluents and technical efficiency 

of firms belonging to eight industries. We also compute total abatement cost 

for firms under different policy scenarios related to simultaneous reduction in 

concentration of three water pollutants including current regulatory standards. 

Wide variations in firm and industry shadow prices (marginal abatement costs) 

provide a strong case for a comprehensive redesign of environmental policy to 

control water pollution by industries in Sri Lanka. 

Keywords

Shadow prices; Technical efficiency; Environmental regulation; Water pollution; 

Distance functions; Sri Lanka  
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Cost of controlling water pollution and its 

impact on industrial efficiency

1.	 Introduction

Degradation of water quality of major urban rivers due to point and non-point sources has become a serious 
challenge in many developing countries (Schaffner, Bader, & Scheidegger, 2009). This is mainly due to rapid 
urbanization accompanied by population and industrial expansion in these countries where development of water 
purification infrastructure facilities and policy has lagged behind industrialization (Biswas & Tortajada, 2009; Qin, 
Su, & Khu, 2011). While the cost of resource degradation is significant to society in these countries, the full cost 
of environmental externalities has not been accounted for as the monetary value of ecosystem services is not 
measured or accounted for in regulation.

This study focuses on water polluting industries in the lower Kelani River catchment. The river is the main source of 
drinking water for Colombo. Apart from provision of drinking water, the river is a source of hydropower generation, 
industrial and irrigation waters, and is used for washing, bathing, fishing and recreation. Due to population growth 
and industrialization, water quality in the lower river has deteriorated rapidly over the last 10 years. Therefore, 
managing river water quality has become a critical issue due to the cost of maintaining drinking water standards 
and the market and non-market costs of deteriorating ecosystem services. Recent studies report that the river 
is of poor quality endangering the aquatic life and degrading the ecology of the estuary ecosystem (Herath & 
Amaresekera, 2007). An urgent need to improve river water quality has, thus, created a strong interest among 
policy makers to experiment different policy instruments in addition to the existing regulatory standards.

The use of market based instruments to control environmental pollution has been strongly encouraged by 
economists despite inconclusive evidence in developing and emerging countries where institutional, financial, 
political and human resource limitations restrict the development of such instruments (Blackman, 2009; Blackman 
& Harrington, 2000; Kathuria, 2006). These instruments create economic incentives for industries to reduce 
pollution by imposing implicit or explicit price on emissions. Well-designed and implemented market based 
instruments have the ability to provide the overall least cost means of achieving desirable levels of emission 
reductions (Stavins, 2003) by equalizing the marginal or incremental abatement cost across polluters (Baumol & 
Oates, 1988; Tietenberg, 2006). In many cases, the marginal cost of abatement among firms varies due to size, 
industrial category, location, price and quality of inputs and differences in abatement technology. The potential cost 
savings achieved by implementing a market based instrument tends to be high where marginal abatement costs are 
different across firms (Newell & Stavins, 2003).

However, information on abatement costs is not readily available for policy makers due to the absence of market 
and observable prices for pollutants. In such cases, among the two main economic approaches to estimate the cost 
of abatement of undesirable outputs, estimation of firm level efficiency and shadow prices using distance functions 
has been widely employed over the cost function approach (Hailu & Veeman, 2000; Lee, Park, & Kim, 2002; Lee, 
2005). The distance functions characterize environmental production technology in a multi-input and multi-output 
setting including undesirable outputs where information on regulations and input pricesis not required. Using 
duality theory from microeconomics, shadow prices can be calculated. The calculated shadow prices with respect 
to a particular pollutant can be defined as the marginal cost of abatement (MAC) for this pollutant as it represents 
the additional cost incurred to reduce the pollution by one unit. The MAC provides useful information at firm level 
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linking current emission levels to the cost of reducing one more unit of emission. At policy level, these values can 
be used as an important tool to determine the economically efficient levels of pollution reductions to maximize 
societal welfare (Vijay, DeCarolis, & Srivastava, 2010).

Estimation of shadow prices using distance functions has followed three main approaches: non-parametric or Data 
Envelopment Analysis (DEA), parametric functions estimated using linear programming (PLP) and the parametric 
Stochastic Frontier Analysis (SFA) (Zhou, Zhou, & Fan, 2014). The DEA is a frontier analysis technique (Cooper, 
Seiford, & Zhu, 2011) which constructs a piece-wise production boundary combining observed input and output 
data (Du, Hanley, & Wei, 2015). The advantage of DEA is that it is not necessary to specify a functional form for 
the underlying production technology (Zhou et al., 2014). However, it does not guarantee the differentiability of the 
estimated distance function which is important in estimating shadow prices. 

In contrast, parametric distance function methods have become popular in the literature due to their differentiability 
which is an essential feature for estimating shadow prices (Zhang & Choi, 2014). PLP methods allow simple 
imposition of important constraints in the frontier estimation. The only shortcoming of this estimation approach is 
that it ignores statistical noise andattributes all deviations from the frontier to inefficiency. On the other hand, the 
stochastic frontier approach allows for measurement errors as well as for hypothesis testing. The inconvenience 
in setting prior monotonicity restrictions on the parametric function (distance function) still remains the main 
disadvantage of SFA method (Kuosmanen & Kortelainen, 2012). 

Shephard (and radial) and directional distance function have been used in the literature. Both can be specified as 
flexible forms – radial as translog and directional as generalised quadratic, allowing for the global imposition of 
linear homogeneity and translation properties, respectively. Many recent studies have tended to use the directional 
distance function that can allow for increases of desirable output(s) while contracting the undesirable output(s). 
Nevertheless, the shadow price estimates vary depending on the directional vector which is used to expand or 
contract the input and output set. Therefore, the choice of an appropriate directional vector plays a key role in 
shadow price estimations (Zhou et al., 2014). However, there is no consensus regarding the choice of directional 
vector. Further, the use of a direction that implies a radical change in input or output mix is akin to assumption of 
a structural change that is more consistent with long-run rather than short-run possibilities. Therefore, the use of 
shadow prices based on a radial distance functions can be more appropriate as these functions maintain quantity 
mixes at observed levels (Ma & Hailu, forthcoming, 2015)

A few studies have calculated shadow prices using distance functions in developing and emerging country context 
(Dutta & Narayanan, 2011; Mandal, 2010; Murty, Kumar, & Dhavala, 2007; Murty & Kumar, 2003; Murty, Kumar, 
& Paul, 2006; Van Ha, Kant, & Maclaren, 2008; Xu, Hyde, & Ji, 2010). To our knowledge this is the first study 
carried out in Sri Lanka to estimate shadow prices of water pollutants in manufacturing industries. In this study, 
we calculate firm and industry specific shadow prices for Biochemical Oxygen Demand (BOD), Chemical Oxygen 
Demand (COD) and Total Suspended Solids (TSS) using input distance functions estimated by PLP (Coelli, Gautier, 
Perelman, & Saplacan-Pop, 2013; Hailu & Veeman, 2000). Given the importance of cost information on policy 
decisions, we simulated total abatement cost for different policy scenarios based on simultaneous reduction of 
pollutant concentration to different levels including those consistent with the current regulatory standards.Our 
choice of input distance functions in this study is based on the following three reasons: (1) In the presence of 
undesirable outputs, an input-based efficiency measure is easy to interpret as it represents the proportional change 
in inputs with both desirable and undesirable outputs held constant (Hailu & Veeman, 2000; Murty et al., 2006);  
(2) Input based efficiency is more appropriate as most firms have more control over inputs than outputs; (3) Shadow 
price estimates using input distance function do not depend on the choice of a direction vector as it is the case of 
directional distance functions.

The paper is organized as follows. Section 2 presents the current policy context and Section 3 explains the 
theoretical concepts behind the methodology we used. Section 4 describes the data and Section 5 reports and 
discusses the empirical results. Section 6 concludes the paper.
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2.	 Policy Context

Sri Lanka uses command and control regulatory measures administered by the Central Environmental Authority 
(CEA) to control industrial pollution. The key regulatory measures adopted by CEA are Environmental Protection 
Licencing (EPL) and concentration standards3. The CEA issues Environment Protection Licenses (EPLs) to firms, 
a mandatory provision to start a new business in Sri Lanka. These licenses are renewed for existing businesses, 
annually for high polluting industries4 and triennially for medium to low polluting industries, after checks and 
verification on whether the wastewater quality meets the existing emission standards. Apart from the government 
decision on not allowing high polluting industries upstream of the water extraction point in the Kelani River, there 
are no any river specific policies to manage water quality. 

Water quality evidence in Sri Lanka suggests that the current approach to pollution regulation in rivers is ineffective 
(AECEN 2006; Vasantha 2008). Firstly, emission standards are based on discharge concentrations which do not 
restricttotal pollution loads. Secondly, EPLs provide no incentive to reduce pollution by industries with varying 
emission levels as all industries under the same pollution category are charged a uniform fee irrespective of their 
emission levels. Thirdly, CEA has limited regulatory and weak enforcement powers. The number of cases handled 
by the legal unit of the CEA was about 252 in 2012 where 64 were new cases related to industrial pollution (CEA, 
2012). Fourth, budgetary constraints have resulted in limited resources within CEA. The lack of a well-managed 
information system is also a hindrance to effective monitoring and enforcement. In addition, the lack of public 
pressure on polluting industries because of limited public awareness and ineffective public complaint processes has 
resulted in poor compliance.

Recently, the CEA has been exploring new options5 such as market-based instruments for effective control of 
industrial wastewater pollution (Vasantha, 2008). In 2007, CEA proposed a Wastewater Discharge Fee (WDF) 
program in Sri Lanka. However, implementing such a program presents a number of challenges due to overlapping 
legal and institutional functions and lack of procedures to design and collect fees. In addition, a lack of technology 
to measure pollution levels at the firm level and the absence of systematic up-to-date industrial pollution database 
make implementation of this program difficult. In many cases, it is difficult for government agencies such as CEA 
to set appropriate fees on industrial emissions due to unavailability of empirical information. This study is an initial 
attempt to fill this information gap on abatement costs. Thus far there have been no studies estimating abatement 
costs and technical efficiencyof water polluting firms in Sri Lanka.

3.	 Methodology

Shephard (1953) was the first to introduce distance functions. The functions can be employed to describe multi-
input and multi-output production technology in order to estimate technical efficiency and productivity measures 
without resorting to specific behavioural assumptions such as profit maximization and cost minimization (Coelli, 
Rao, O'Donnell, & Battese, 2005). There are two types of distance functions, output and input. An output distance 
function characterizes production technology by considering maximum proportional expansion of the firm’s output 
vector for a given set of inputs. An input distance function represents the production technology by looking at the 
maximal proportional contraction of the input vector for a given output vector. 

In this paper, we use input distance function which provides meaningful and explicit measure of production 
efficiency as it considers proportional savings of inputs (costs) while keeping both desirable and undesirable 
outputs constant. In the case of output efficiency measures, efficiency is defined in terms of proportional expansion 

3 The national concentration standards for water pollutants discharge into inland water bodies are given as 30mg/l for BOD, 250 mg/l for 

COD and 50 mg/l for TSS.
4 Industries have been categorised by the CEA based on their level of pollution  under three main categories; A-high polluter, B-medium level 

polluters and C-small scale polluters. 
5 CEA also initiated a program in 2011 to increase the voluntary compliance named as the national Green Award Scheme.   This program 

recognizes and publicizes private and public sector institutions that operate in environmental friendly manner.
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of both desirable and undesirable outputs but the net welfare gain from such an expansion cannot be determined. 
The net welfare gain or loss depends on the difference between benefits gained from the expansion of desirable 
output and the damage caused by simultaneous expansion of undesirable outputs. Therefore, interpretation of radial 
output efficiency changes is ambiguous in the presence of undesirable outputs (Hailu & Veeman, 2000; Murty et al., 
2006). In addition, the use of input distance function is preferred as the firms in our sample have more control over 
inputs than the outputs.

3.1	 The technology set and input distance function
The production technology of each water polluting firm can be described using input sets, L (u), representing 
the set of all input vectors x є ℜN+ that produce output vector u є ℜM+ with the output vector consisting of both 
desirable and undesirable outputs (for example water pollutants). The input distance function can be defined 
against the input requirement set as follows:

Di (x, u) = 〖Maxρ { ρ:(x⁄ρ,)Є L(u) } ∀  u ∈ ℜM+ 					     (1)

That is the input distance function indicates the maximum amount by which an input vector x can be deflated or 
contracted given the output vector and the production technology. 

The input distance function is linearly homogenous, non-decreasing and concave in x and non-increasing and 
quasi-concave in u(Coelli et al., 2005). The value of the distance function is equal to 1 (if x is located on the inner 
boundary of the frontier) or greater than 1 if x is able to produce u. In other words, the distance function provides a 
complete representation of the production technology.

Di (x, u) ≥ 1 if xЄ L(u)								        ( 2 ) 

3.2	 Derivation of Shadow prices
We employed input distance function to calculate shadow prices of pollutants following (Hailu & Veeman, 2000). 
Shadow prices of pollutants can be derived from the cost function (3) and (4) using the behavioural assumption of 
cost minimization and the duality between cost function and input distance function. A formula for shadow price 
can be derived using envelope theorem on the first order conditions of the cost minimization problem defined 
against a distance function representation of the technology as shown in Eq.(5) and (6) below.

C (u, p) = Min{p. x: x Є L(u) }  							       ( 3 )   

C (u, p) = Min{p. x: D(u. x ≥ 1), x Є ℜN+} 						      ( 4 )

∇u C (u, p) = - π(u,p). ∇u D (u, x) 							       ( 5 ) 

∇u C (u, p) = -C(u, p). ∇u D (u, x) 							       ( 6 ) 

where π is the Lagrangian multiplier and equals the value of optimized cost function, allowing us to derive (6) from 
(5). Using (6), the ratio of shadow prices of outputs can be written as:

                            									         ( 7 )

This ratio reflects the trade-off between two outputs in the production technology. For example, if i is an undesirable 
output and j is desirable output, the ratio represents the number of units of desirable output j that would be forgone 
to reduce the emission of one unit of pollutant j is the producer shadow price for ith pollutant.

If we assume (as is commonly done) that the market price for the desirable output equals its shadow price (Fare, 
Grosskopf, Lovell, & Yaisawarng, 1993; Färe, Grosskopf, Noh, & Weber, 2005; Hailu & Veeman, 2000; Shephard, 
1970), then the shadow price for undesirable output ri

* can be witten as:

r+
i

r+
j

= - 

∂D(u,x)
∂ui

∂D(u,x)
∂uj
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 										          ( 8 )  

The shadow price of undesirable output is positive as the input distance function is non-decreasing in pollutant 
outputs and the derivatives have opposite signs. We use Eq. (8) to calculate shadow prices for three water 
pollutants (BOD, COD and TSS).

3.3	 Estimation of parametric input distance function
The input distance function is homogenous in inputs. The flexible functional form that allows us to improve this 
property globally is the translog form. We estimate the translog parametric input distance function frontier with 
linear programming techniques.

ln Di (u, x) =∝0 + ∑   ∝n  ln xn   +∑   βm   ln  um 

+ (0.5) ∑   ∑  ∝nn'  ln xn  ln xn'

 + (0.5) ∑  ∑     βmm'  ln um ln um'

+ ∑  ∑   Υnm  ln xn ln um 								        ( 9 )

Aigner and Chu (1968) were the first to use mathematical programming techniques to estimate parameters of 
production function. This method minimizes the sum of deviations of the values of the function from the unknown 
frontier that is being estimated subject to monotonicity and homogeneity restrictions as specified in Hailu and 
Veeman (2000). For this study, the ability to impose inequality constraints is very important as we need to treat 
desirable and undesirable outputs asymmetrically in the specification of technology. 

The objective of our linear programming is to choose a set of parameter estimates that minimize sum of deviations 
of log values of the input distance function from zero. We impose monotonicity, homogeneity and symmetry 
conditions as constraints. Also we impose the constraint that estimated input distance value should be equal to 
one or greater than one. Furthermore, the estimated input distance function is required to be non-decreasing in 
undesirable outputs (Hailu & Veeman, 2000). To implement the estimation we use APEAR, an R based package for 
productivity and efficiency analysis (Hailu, 2013).

4.	 Data 

The data used in this paper come from a survey of water polluting industries that we conducted in 2013 in Sri 
Lanka. We selected a representative sample of water polluting firms categorised under high polluters6 and medium 
level of polluters located within 1km of the river (see Fig: 1), from the database of industries available from the 
environmental agency (CEA). There were 324 water polluting individual firms in total and our sample comprised 
74 of them. We interviewed production and administrative managers of the firms to collect information on inputs, 
desirable outputs and other required firm specific data for the year 2012.

 

r+
i = - 

∂D(u,x)
∂ui

∂D(u,x)
∂uj

 ⦁ ri
*

N

n = 1

M

m = 1

N

n = 1

N

n' = 1
   M M

m = 1 m' = 1
N

n = 1

M

m = 1

6  The CEA  categorized firms  into three categories : high,  medium and low polluting firms based  on the size, and nature of the pollutants.
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Fig 1: Spatial distribution of water polluting firms within 1km of the lower Kelani River

In addition to desirable outputs, these firms produce wastewater (i.e. undesirable output) in their industrial 
processes. The wastewater is discharged into the Kelani River either treated or untreated. The quantity of 
wastewater discharged by each firm was recorded. However, the quality of the wastewater (concentration of BOD, 
COD and TSS in mg/l) discharged by each firm was not available for the entire sample. Therefore, we extracted 
water quality data for 25 firms from the latest records available with the CEA. Then, we collected wastewater 
samples from the rest of the firms by visiting them (without prearranged appointments) with an environmental 
officer of the CEA and an officer from a private laboratory. Information on undesirable outputs was estimated based 
on water samples collected from the firms at the survey time. Therefore, we assumed the waste water volumes and 
concentration levels were not changing throughout the year. 

The majority of firms (66 per cent) in our sample are high polluters. Although having an environmental protection 
licence (EPL) is a mandatory requirement for these industries, only 53 per cent of the firms currently have licences. 
Little more than half of the firms have end–of-the-pipe treatment plants and only 29 per cent of firms comply 
with the existing concentration standards for all three pollutants. Even though firms classified as high polluters 
are monitored annually by the CEA, only 63 per cent of them have treatment plants. In this category, only 53 per 
cent currently own licenses with an even smaller proportion (49 per cent) complying with existing concentration 
standards. Among medium level polluters which accounts for 33 per cent of the sample and are monitored once 
every three years, only 52 per cent possess licences, 40 per cent own treatment facilities and 12 per cent comply 
with current standards.

For the estimation, we aggregated inputs into four categories: raw materials, labour, power, and services and 
maintenance as their costs. We also aggregated outputs into four: one desirable output (total sales) and three 
undesirable outputs (pollution loads of BOD, COD and TSS). Total sales are aggregated in US$ and pollution loads 
are reported in kilograms. Only some firms had end-of-pipe treatment facilities to for wastewater. For these firms, 
we recorded the cost of annualized capital and operating cost under treatment costs.
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Table 1 : Descriptive statistics of output and input variables (000s)

Variable Unit Mean Standard deviation

1. Total sales US$ 4700.36 17900.00

2. BOD load kg 3.78 15.67

3. COD load kg 6.74 26.87

4. TTSS load kg 3.33 19.39

5. Raw materials US$ 1936.74 11700.00

6. Labour US$ 96.21 267.83

7. Power US$ 65.48 284.48

8. Service and maintenance US$ 42.74 204.44

9. Treatment cost US$ 3.02 6.09

Table 2 shows the cost share of each input by industry. Raw materials account for the biggest cost share in all 
industries followed by cost of labour, power and service and maintenance and the cost of waste water treatment.
The share of waste treatment is comparatively small, 0 to 4.4%; however, figures are available only for the firms that 
have end-of-pipe emission treatment facilities.

Table 2: Mean cost share of each input by industry

Industry No of Firms Raw material Labour Power Service and 

maintenance

Waste water 

treatment

Chemical 6 0.607 0.235 0.092 0.065 0.001

Food 12 0.666 0.147 0.133 0.051 0.002

Beverages 5 0.509 0.242 0.123 0.092 0.035

Livestock farms 10 0.674 0.232 0.018 0.032 0.044

Vehicle service 25 0.469 0.375 0.038 0.083 0.034

Textile &leather 8 0.463 0.351 0.090 0.069 0.027

Mineral 5 0.773 0.109 0.093 0.021 0.004

Waste recycling 3 0.434 0.329 0.045 0.192 0.000

Total 74 0.561 0.276 0.070 0.069 0.024

5.	 Empirical results

In this section we report shadow price estimates, abatement cost estimates under different policy scenarios and 
the technical efficiency scores obtained from PLP 

5.1	 Shadow prices	
We computed shadow prices for the undesirable outputs (BOD, COD and TSS) using the parameters (Table A.1) of 
the input distance function estimated by PLP. This was done using the shadow prices ratios as illustrated in the Eq. 
(8). The shadow price values are based on the marginal rate of transformation between undesirable and desirable 
outputs. Therefore, these values can be interpreted as marginal cost for pollution abatement for industries. On 
average, the cost of abatement of a kilogram of undesirable outputs is found to be US$ 25.48 for BOD, US$ 14.76 
for COD and US$ 13.39 for TSS (Table 3). 
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Table 3: Shadow pricesof BOD, COD and TSS (US$/ kg)

Industry No. of 

firms

BOD COD TSS

Median Mean Median Mean Median Mean

Chemical 6 16.57 43.26 6.22 15.74 6.61 10.60

Food 12 1.83 13.20 2.02 6.13 2.02 12.73

Beverages 5 .0008 60.11 0.01 65.22 0 0.00

Livestock farms 10 0.825 40.37 5.72 11.13 0.49 1.55

Vehicle service 25 2.51 12.85 5.68 12.52 7.46 19.61

Textile and  leather 8 3.86 26.65 2.52 5.66 6.42 13.83

Mineral 5 18.4 42.30 7.24 24.95 7.13 19.31

Waste recycling 3 0.506 5.76 0.01 1.49 1.03 25.73

Total 74 3.02 25.48 4.41 14.76 3.24 13.59

The shadow prices show a wide variation across firms: US$ 0 to 325.5 for BOD, US$ 0 to 251.8 for COD and US$ 
0 to 168.37 for TSS. Fig: 2 depicts the distribution of shadow prices for the three pollutants. The graph shows that 
shadow prices for three pollutants are within the range of 0-20 for majority of firms.

 

Fig 2: Kernel distribution of shadow prices

We undertook further an empirical analysis to understand the main reasons for variations in shadow prices of BOD 
(Table B.1). The variation can be explained by the fact that our sample firms comes from different industries. For 
example, compared to vehicle servicing firms, the shadow price for beverages and livestock firms is significantly 
higher. The variation of shadow prices of firms within the same industry is due to scale of operations and the 
compliance to environmental regulations even though all firms are operating under the same regulatory emission 
standards. Firms with bigger pollution loads tend to have lower shadow prices. However, whether a firm categorised 
by the CEA as a higher polluter was not found to be statistically significant in explaining the pollution load variations.
We undertook similar analyses for COD and TSS and found the same set of variables significantly influencing the 
shadow prices.
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Firms that are already complying with standards have very high shadow prices for all three water pollutants (Table 
4). This is partly due to the use of inefficient abatement technologies. The high shadow prices for complying firms 
imply that further reduction of pollutants is very costly for those firms. The mean shadow price for firms that do not 
adhere to existing standards is US$ 6.40, US$ 7.32 and US$ 9.75 for BOD, COD and TSS, respectively. 

Table 4: Number of firms and shadow pricesby compliance to the existing concentration standards

Compliant firms Non-compliant firms

BOD COD TSS BOD COD TSS

Number of firms (n) 27 40 38 47 34 36

Mean shadow price

(US$/ kg)

58.70 21.10 17.25 6.40 7.32 9.75

(16.25)* (6.85) (4.55) (2.26) (2.00) (2.71)

* Standard deviations are reported in brackets

5.2 	 Abatement cost under different policy scenarios
The results presented above provide information on abatement costs at the margin, given existing compliance 
patterns. It is also possible to use the estimated distance function to derive abatement cost curves under different 
levels of pollution. The cost curves can be generated for individual pollutants or a simultaneous reduction of 
pollutants. For each firm, we simulated the marginal abatement cost of simultaneous reductions under the 
assumption that the firm’s efficiency level would remain the same. Given the fact that the current regulation 
on effluent discharge to the water bodies based on concentration standards, we simulated total cost for firms 
to meet a range of concentration standards. One of the scenarios considered is a reduction of actual effluent 
concentration levels to what the current standards require (Scenario 9). The figures for this and eight other 
scenarios are summarised in Table 5, which includes figures indicating the magnitude of these costs as percentage 
of total production cost and as a percentage of total revenue for all the firms in the sample. We also record the 
corresponding loads of BOD, COD and TSS for each concentration level based scenarios.

Table 5: Abatement cost simulations for policy scenarios based on simultaneous reduction of three 
pollutants.

Policy  
Scenarios

Concentration levels (mg/l) Abatement as a % of effluent 
loads

Overall 
abatement 

cost 
(Million 

US$) 

Abatement  
as a  % of  

total  
production  

cost

Abatement  
as a  %of  

 total  
revenue

BOD COD TSS BOD COD TSS

1 200 500 250 72 23 57 0.09 0.06 0.03

2 180 450 200 73 25 59 0.11 0.07 0.03

3 150 400 180 75 27 59 0.12 0.08 0.03

4 130 380 150 76 28 61 0.13 0.08 0.04

5 110 350 130 77 29 62 0.14 0.09 0.04

6 90 320 110 78 30 63 0.16 0.10 0.05

7 70 300 90 79 31 64 0.17 0.11 0.05

8 50 270 70 80 32 65 0.20 0.13 0.06

9 30* 250* 50* 81 33 67 0.23 0.15 0.07

* Indicates the current effluent standards for discharging waste water to inland water bodies 	

The cost estimates on overall industrial pollution treatment is not available in Sri Lanka. In India, the cost of water 
pollution treatment would account for 2.5 per cent of the industrial GDP (Kumar & Murty, 2011). A study on 
rubber industry conducted in Sri Lanka using data from 2003-2005 found that the pollution tax required to bring 
an average firm to compliance would be 8.7 percent of average annual turnover (Edirisinghe, 2014). Compared 
with these figures it is apparent that the overall cost for non-complying firms (in our sample) to meet the current 
regulatory standard is very low (0.15 per cent of total production cost and 0.07 percent of the industrial revenue). 
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However, given the heterogeneity of firms and MAC, especially small firms and firms with high MAC cost would pay 
higher cost than the average values suggest.

The total abatement cost is comparatively high in the case of current concentration standards; 0.06 per cent of 
the total cost and 0.15 per cent of the total revenues for the firms. As scale economies exist in pollution reduction, 
firms could save if they are allowed to first meet less stringent concentration standards. For example, lifting 
concentration standards from scenario 1 to 9, would reduce the costssignificantly (Figure 3). The policy scenario 1 
shows the pre-treatment standards of some common central waste treatment plants with considerably lower costs 
compared with existing emission standards. As the industries face higher individual costs in treating waste to very 
low concentrations, there would be a potential for cost saving if firms treat their waste to pre-treatment standards 
and direct the discharges to a common treatment plant. This would be a relatively low cost action to improving 
concentration levels from their current levels. However, currently this option is available only in certain industrial 
parks and areas of the country.

Fig 3: Total abatement cost and the policy scenarios 7 

5.3	 Technical efficiency 
The measures on technical (input) efficiency using input distance function frontiers are summarized by industry in 
Table 6. In general, technical efficiency estimates are low for all water polluting industries in the sample, indicating 
that there is untapped potential for efficiency improvement. The mean technical efficiency is 35 per centimplying 
that there is a substantial room for cost savings by reducing inputs while keeping the outputs constant.

Table 6: Input efficiency based on parametric input distance functions 

Industry No of  
Firms

Efficiency

Mean Median

Chemical 6 0.2671 0.1275

Food 12 0.2885 0.1589

Beverages 5 0.3106 0.1863

Livestock farms 10 0.4442 0.2968

Vehicle service 25 0.3938 0.3431

Textile and  leather 8 0.1719 0.1322

Mineral 5 0.3438 0.2164

Waste recycling 3 0.6343 0.8259

Total 74 0.3500 0.2366

7  The scenarios are based on concentration levels of pollutants and corresponding pollution loads, as reported in Table 5.
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We carried out an empirical analysis of technical scores with industry categories, pollution category and degree of 
compliance to current regulation on concentration standards (Table B.2). Compared to vehicle services, food and 
textile industries found to be significantly less efficient. Higher the degree of compliance, lower the efficiency of 
firms.

6. 	 Conclusions and policy implications

Controlling water pollution in inland water bodies is one of the key challenges in developing countries given the 
dependence on surface water for drinking, industrial use, irrigation and recreational uses. Despite continuous 
deterioration of surface water quality, in many of these countries, environmental regulations are not linked to 
surface water quality objectives as is the case in Sri Lanka. In this study, we examined existing regulations on 
industrial water pollution, its cost implications and incentives for compliance by industries. 

First, we investigated the cost of pollution for a representative sample of firms belonging to eight types of water 
polluting industries located in the Kelani river catchment. These industries operate under regulatory standards on 
emission concentrations but only 29 per cent of them are compliant with the standards. Using parametric input 
distance functions, we estimated industry and firm specific shadow prices (marginal costs) of water pollutants. Our 
results reveal a wide variation in shadow prices among firms and also firms within the same industry. The variation 
of firm-specific shadow prices are due to differences in scale of operation and heterogeneity of pollution abatement 
technologies. The compliance with existing standards also contributes to the differences. Shadow price estimates 
for all three pollutants (BOD, COD and TSS) are significantly higher for the compliant firms compared to non-
complaint firms implying that further reduction of pollutants is more costly for complying firms. 

Second, we simulated the potential total abatement cost for the firmsunder different policy scenarios for 
simultaneous reduction of concentrations s including current regulation on three water pollutants. The overall 
abatement cost to bring non-complying firms to compliance is not very high considered as a percentage of total 
firm production cost and revenues. However, small firms and the firms with high marginal cost would have to 
pay high cost for abatement than average values suggest. As marginal cost increases with lower concentration 
levels, firms with comparatively lower emission concentrations face higher costs. Therefore, having uniform 
concentrations standards across all firms may not yield optimal results in terms of minimizing cost. Hence, the cost 
heterogeneity among firms makes a strong case for market based instruments such as effluent discharge tax that 
equalize marginal abatement cost among all polluting firms and provide least cost solution while achieving pollution 
reduction targets. 

Third, we examine the technical efficiency of firms and found that average efficiency is 35 per cent. This means the 
manufacturing firms can reduce 65 per cent of their inputs while keeping their current production constant. We also 
found that the firm efficiency is negatively related to the degree of compliance to current regulation; implying that 
there is no incentives for firms to comply.

The evidence on poor compliance and wide variations in shadow prices (MAC) makes a strong case for a new 
design of comprehensive environmental policy to control industrial pollution as an alternative to existing command 
and control regulations. The shadow price estimates can be used as guidelines to design market based policy 
instruments such as emission-based taxes or tradeable permits that would cap the level of pollution released into 
the river. The case for a serious consideration of alternative approaches is made stronger by the evidence of weak 
enforcement of current regulations. Therefore, setting appropriate economic instruments would provide incentives 
for firms to control emissions in socially optimum ways without imposinga greater burden on complying firms. 
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Appendix A

 
Table A1 : Parametric estimates of input distance function for water polluting firms in Sri Lanka

Variable Parameters Values

lny1 ∝1 -0.7923

lnx1 ∝2 0.4261

lnx2 ∝3 0.1110

lnx3 ∝4 0.0550

lnx4 β1 0.4078

lnb1 β2 0.0002

lnb2 β3 0.0014

lnb3 β4 0.0002

lny1y1 ∝11 -0.0932

lny1x1 ∝22 -0.0106

lny1x2 ∝33 0.0336

lny1x3 ∝44 0.0135

lny1x4 ∝12 -0.0365

lny1b1 ∝13 0.0000

lny1b2 ∝14 -0.0003

lny1b3 ∝23 -0.0001

lnx1x1 ∝24 0.0545

lnx2x1 ∝34 -0.0431

lnx3x1 β11 -0.0077

lnx4x1 β22 -0.0037

lnb1x1 β33 -0.0001

lnb2x1 β44 0.0004

lnb3x1 β12 0.0000

lnx2x2 β13 -0.0209

lnx3x2 β14 -0.0098

lnx4x2 β23 0.0739

lnb1x2 β24 0.0001

lnb2x2 β34 0.0000

lnb3x2 γ11 0.0000

lnx3x3 γ12 0.0192

lnx4x3 γ13 -0.0017

lnb1x3 γ14 -0.0002

lnb2x3 γ21 -0.0005

lnb3x3 γ22 0.0000

lnx4x4 γ23 -0.0685

lnb1x4 γ24 0.0003

lnb2x4 γ31 0.0002

lnb3x4 γ32 -0.0001

lnb1b1 γ33 -0.0001

lnb2b1 γ34 0.0001

lnb3b1 γ41 0.0000

lnb2b2 γ42 -0.0004

lnb3b2 γ43 0.0002

lnb3b3 γ44 -0.0002

Intercept ∝0 2.4205

Y1 : Total Sales (SLRs. Millions)				          x1:  Cost of raw material
b1:  BOD (tonnes)					           x2:  Cost of labour
b2:  COD (tonnes)					           x3:  Cost of power
b3:  TSS (tonnes)					           x4:  Cost of service and maintenance
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Appendix B

Table B.1

Dependant variable: Shadow price of BOD (USD/kg) Adjusted R2 =0.2524

Variable Coefficient Std. Err. P>t

High polluters (A) -4.083 15.824 0.797

Water consumption (in 1000 m3) -0.009** 0.003 0.002

Industrial category

Chemical 18.097 25.184 0.475

Food 25.371 19.746 0.204

Beverages 105.770** 33.373 0.002

Livestock 47.466* 20.405 0.023

Mineral 11.773 26.859 0.663

Textile 30.970 23.142 0.186

Waste recycling 24.668 33.580 0.465

Compliance with BOD standard 72.993*** 15.621 0.000

Constant -15.685 14.610 0.287

Table B.2

Dependant variable: Firm efficiency Adjusted R2 =0.0557

Variable Coefficient Std. Err. P>t

High polluters (A) 0.015 0.095 0.872

Industrial category

Chemical -0.124 0.138 0.372

Food -0.325** 0.145 0.029

Beverages -0.080 0.148 0.589

Livestock -0.227 0.175 0.199

Mineral -0.005 0.145 0.973

Textile -0.326** 0.141 0.024

Waste recycling 0.007 0.216 0.975

Degree of compliance to standards -0.004 * 0.002 0.050

Constant 0.725 *** 0.162 0.000
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